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Singapore Management University

▪ Third university in 
Singapore

▪ Number of students:
▪ 9000+ (UG)

▪ 2000+ (PG)

▪ Schools:
▪ Computing & IS

▪ Economics

▪ Law

▪ Business

▪ Accountancy

▪ Social Science
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School of Computing and Information Systems

▪ Undergraduates: 1800+

▪ Master students: 500+

▪ Doctoral students: 70+
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RISE Center (2023-2028)

Center for Research on Intelligent Software Engineering (RISE)

10 faculty members, 40+ staffs and students

AI4SE: AI for SE (*)

SE4AI: SE for AI (*)

SE4ET: SE for Emerging Tech (+)

SSE: Sustainable SE (#)

SEPE: SE Practice Excellence (#)

(*) Established

(+) Growing

(#) To be developed
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SOftware Analytics Research (SOAR) Group

https://soarsmu.github.io/
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SE AI

CyberSec

SOftware Analytics Research (SOAR) Group

Empirical 
Studies

Recommender Systems

Pattern /
Specification 

Mining

Automated Test 
Generation

Vulnerability 
Discovery and Repair

Bug Finding & Repair

Android Permission 
and Sandboxing

Android Side Channel 
Analysis

Defect Prediction

Bug Report Analysis

Smart Contract
Analysis

Open Source 
Security Risk

Binary Code Analysis

AI Fairness

AI Testing

Information Linking

Question 
Answering

AI System 
Engineering

Code Summarization

Usable Security
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Software and Bugs

“There are two ways to write error-free 
programs; only the third works.”
-- Alan J. Perlis

“Up to a point, it is better to just let the 
snags [bugs] be there than to spend such 
time in design that there are none.”
-- Alan M. Turing
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Bugs and Economy

▪ Software bugs are prevalent

▪ Although most bugs are less “harmful”, many have serious impact

▪ Collectively responsible for trillions of dollars
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Bug Management and Need for Automation

▪ Developers often receive more bugs than they can handle

▪ Developers spend a lot of time debugging
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Bug Management and Need for Automation

“Everyday, almost 300 bugs appear that need 
triaging. This is far too much for only the Mozilla 

programmers to handle.” – Mozilla Developer

ETX 2005
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Bug Management and Need for Automation

“Unfortunately, the large quantity of
user reviews (e.g., WeChat receives around 60,000 reviews
per day) makes manual analysis inefficient and unrealistic.”

ICSE 2019
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Key Question

Can we help developers by 
automating some tasks in the 

bug report management process?
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I. What Data Can We Mine?

▪ People report errors and incidents that they encounter when
using a software

▪ These reports often include:

▪ Description of the issue

▪ Steps to reproduce the issue

▪ Severity level

▪ Parts of the system affected by the issue

▪ Failure traces

▪ Come in various “shapes and sizes”
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Issue Report – Bugzilla, Manually Submitted

Title

Informative 
Fields
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Detailed
Description

Issue Report – Bugzilla, Manually Submitted
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Issue Report – JIRA, Manually Submitted

Title

Informative 
Fields

Detailed
Description
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Issue Report – Bugzilla, Submitted by Bot

CI 
Failures
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Issue Report – Google Play Review

Comment

Rating
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Issue Report – WeChat Feedback Form
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Commits Linked to Issue Reports
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II. What Tasks Can We Automate?

TSE 2020
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Literature Review

• Paper Selection
• 7 journals and 10 conferences
• Years (2006-2017)
• Regular Papers
• Non-Empirical Studies
• Card Sorting

115 papers of 10 categories

Journals

TOSEM, TSE, EMSE, ASEJ, 
JSS, IST, TRel

Conferences

ICSE, FSE, ASE, ICSME, ICPC, 
ISSTA, SANER, ESEM, ICST, MSR
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Literature Review

ID Category Total

T1 Bug localization 24

T2 Bug assignment 22

T3 Duplicate/similar bug detection 14

T4 Bug categorization 12

T5 Bug fixing time prediction 10

T6 Bug severity/priority prediction 8

T7 Bug report completion/refinement 8

T8 Bug-commit linking 7

T9 Bug report summarization/visualization 5

T10 Reopened bug prediction 5

List of papers:
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Automatable Tasks (T1)

Bug 
Localization

These techniques process a bug report, and locate relevant program 
elements that possibly contain the bug. Some of these techniques also 
recommend candidate repairs.

ICSE 2012
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Automatable Tasks (T2)

Bug 
Assignment

These techniques process a bug report, and recommend the 
most appropriate developers to address it.

ICSE 2006
MIP ICSE 2016
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Automatable Tasks (T3)

Duplicate / 
Similar Bug
Detection

These techniques detect duplicate / similar reports in issue tracking 
systems.

ICSE 2010
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Automatable Tasks (T4)

Bug Categorization These techniques process a bug report, and classify it 
into different categories (e.g. invalid or not, bug or 
feature request, security bug report or not etc.)

WCRE 2012
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Automatable Tasks (T5)

Bug Fixing Time 
Prediction

These techniques process a bug report, and predict 
how long it will take to fix the bug.

MSR 2011
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Automatable Tasks (T6)

Bug Severity / 
Priority Prediction

These techniques process a bug report, and predict its 
severity / priority.

ICSM 2008
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Automatable Tasks (T7)

Bug Report 
Completion /
Refinement

These techniques aim to generate a high-quality bug report. 
Some of these techniques automatically generate a new 
bug report when software crashes. Some others enrich 
/ modify an existing one.

FSE 2015
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Automatable Tasks (T8)

Bug-Commit 
Linking

These techniques aim to link bug reports with bug fixing 
commits or bug inducing commits. With these techniques, 
developers can better understand which commits fix the bug and 
why/how/when the bug is introduced.

ICPC 2015
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Automatable Tasks (T9)

Bug Report 
Summarization /
Visualization

These techniques process a bug report, and summarize it 
into a much shorter form. Some of these techniques also 
help developers better navigate / understand bug reports 
through visualization.

TSE 2014
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Automatable Tasks (T10)

Reopened Bug 
Prediction

These techniques process a closed bug report, and predict 
whether it is likely to be reopened.

ICSE 2012
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Potential gap between research and practice 
in automated bug report management:

• Are these techniques appreciated by practitioners?

• What are practitioners’ complaints and challenges?

This study:

• Investigates practitioner views of existing research work

• Identifies new research directions by learning from practice

Practitioners’ Perceptions
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Methodology
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Surveys

Questionnaire
• 10 closed-ended questions for T1-T10 

(very important->very unimportant)

• Up to 2 open-ended questions asking 
rationales of important/unimportant ratings

Participants

Industrial 
professionals

Open-source 
developers

327 
respondents

• Demographic questions 
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Interviews

Procedure

~1 hour, using video conferencing or in-person

4 out of 10 categories with each interviewee

Participants 25 out of 107 survey respondents who left 
email addresses in the anonymous survey
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Findings

~70% of ratings (>80% for testers) 

are important / very important
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Findings

ID Technique 5 4 3 2 1

T1 Bug localization 49.2% 33.4% 9.6% 6.2% 1.5%

T2 Bug assignment 33.4% 38.9% 19.0% 5.8% 2.8%

T3
Duplicate / similar bug 

detection
35.8% 41.6% 18.3% 3.4% 0.9%

T4 Bug categorization 33.3% 41.0% 17.7% 5.5% 2.4%

T5
Bug fixing time 

prediction
17.8% 28.3% 31.2% 15.3% 7.5%

Very 
Important

Very 
Unimportant
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Findings

Very 
Important

Very 
Unimportant

ID Technique 5 4 3 2 1

T6
Bug severity / priority 

prediction
25.6% 37.3% 26.9% 8.3% 1.9%

T7
Bug report completion / 

refinement
34.5% 42.8% 18.8% 3.1% 0.9%

T8 Bug-commit linking 36.7% 44.4% 15.1% 2.8% 0.9%

T9
Bug report 

summarization / 
visualization

25.9% 34.9% 25.6% 10.8% 2.8%

T10
Reopened bug 

prediction
17.8% 29.1% 32.2% 15.0% 5.9%
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Findings

Highest 
Rank

Lowest 
Rank
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Summary of Green Segment (Parts II, III)

▪ Bug reports come in various shapes and sizes

▪ Hundreds of papers on AI for issue management

▪ Since “Who Should Fix this Bug?” (MIP ICSE 2016)

▪ Categorized into 10 categories

▪ Perceived as important by practitioners (70-80%); top-4:

▪ Bug Localization

▪ Duplicate / Similar Bug Report Detection

▪ Bug Report Completion / Refinement

▪ Bug-Commit Linking

Data

II

III

Tasks
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IV. Bug Localization

(Thousands of) Source Code Files

Ranked List of Files

Bug  
Report

IR-Based Bug 
Localization 
Technique

File 3

File 1

File 2

…
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ICSE 2012

Popular Early Work
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BugLocator
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rVSM Score

Classical VSM 
with

Account for the fact that large files 
often contain bugs
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SimiScore
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Subject Programs
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Results
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TSE 2022

Recent Work with Industry
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BugLocator’s Performance on Adobe
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Adobe’s Applicability Requirement

▪ Consulted 4 developers at Adobe Analytics

▪ For developers new to a repository:

▪ the tool should identify a buggy file in the top 10 recommendations
at least 70% of the time (Top 10 score ≥ 70%)

▪ For developers familiar with a repository

▪ the tool should identify a buggy file in the top 5 recommendations
at least 80% of the time (Top 5 score ≥ 80%)
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BL+: Extending BL with Additional Corpora

BugLocator

Pre-processing

SimiScore past 
comments

FinalScore α
values

rVSMScore Corpora Options

Source code file content

Source code differences

Commit messages

Bug report summary

Bug report description

Bug report past comments

2,772 configurations
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Legion: Composing BL Configurations

1. Run all BL 
configurations 

2. Generate 
stacked scores

3. Learn a supervised 
model
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Legion Performance
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Other Works

TSE 2019

TSE 2021
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IV. Duplicate Bug Report Detection

Duplicate Bug Report Detection (DBRD) Process
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Popular Early Work

ASE 2011

Most Cited Research Paper of ASE 2011
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REP: Lightweight, Learning-Based DBRD

▪ We want to design an approach that can learn from historical data

▪ The approach needs to consider specific properties of bug reports

▪ The approach needs to be lightweight enough
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REP: Lightweight Learning-Based DBRD

19 parameters tuned based on 
historical human decisions 

on training data

82

Modification: BM25F is designed for short 
queries, while bug reports can be long
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Experiment - Dataset
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Experiment - Result

BM25Fext is more effective than BM25F
84
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Experiment - Result

REP is more effective and efficient than ICSE’10 (SVM)
85
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Benchmarking Study

TOSEM 2022
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Motivation

▪ Limitations of existing datasets: old bug reports from Bugzilla with latest
status, e.g., SABD1 was trained and evaluated on the following dataset

▪ Lack of comparison among
▪ Recent research tools, e.g., SABD1, DC-CNN2, HINDBR3

▪ Research and industrial tools

1 Rodrigues, Irving Muller, Daniel Aloise, Eraldo Rezende Fernandes, and Michel Dagenais. "A soft alignment model for bug deduplication." In Proceedings of the
17th International Conference on Mining Software Repositories, pp. 43-53. 2020.
2He, Jianjun, Ling Xu, Meng Yan, Xin Xia, and Yan Lei. "Duplicate bug report detection using dual-channel convolutional neural networks." In Proceedings of the
28th International Conference on Program Comprehension, pp. 117-127. 2020.
3Xiao, Guanping, Xiaoting Du, Yulei Sui, and Tao Yue. "Hindbr: Heterogeneous information network based duplicate bug report prediction." In 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE), pp. 195-206. IEEE, 2020.
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Motivation

We aim to:

▪ Provide a benchmark that addresses the limitations of existing datasets

▪ Compare research tools on the same dataset

▪ Compare research and industrial tools
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Research Questions

RQ1: How significant are the potential biases on the evaluation of DBRD
techniques?

RQ2: How do state-of-the-art DBRD research tools perform on recent 
data from diverse ITSs?

RQ3: How do the DBRD approaches proposed in research literature 
compare to those used in practice?
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Research Questions

RQ1: How significant are the potential biases on the evaluation of DBRD
techniques?

RQ2: How do state-of-the-art DBRD research tools perform on recent 
data from diverse ITSs?

RQ3: How do the DBRD approaches proposed in research literature 
compare to those used in practice?
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RQ1 - Dataset

Age bias: Statistics of old (2012–2014) and recent (2018–2020) data

State bias: The percentage of BRs changed the corresponding state in 2018–2020
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RQ1 - Dataset

ITS bias: Statistics of data in the six projects
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RQ1 - Result

Mann-Whitney-U 
with Cliff’s Delta 
Effect Size |𝑑| 

Results

Answer: 

Age Bias and ITS Bias
have a statistically 

significant impact, while 
State Bias does not.
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Research Questions

RQ1: How significant are the potential biases on the evaluation of DBRD
techniques?

RQ2: How do state-of-the-art DBRD research tools perform on recent 
data from diverse ITSs?

RQ3: How do the DBRD approaches proposed in research literature 
compare to those used in practice?
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RQ2 – Result

Lightweight & overall best performer in 2022, over various 
industry and research tools on recent diverse datasets

Answer: 

Overall, REP performs 
the best, especially for 
typical bug repositories 
with <10k bug reports.1

1 Average number of issues in 994 
repositories: 2,365: Joshi, Saket 
Dattatray, and Sridhar Chimalakonda. 
"Rapidrelease-a dataset of projects 
and issues on github with rapid 
releases." In MSR 2019.

Hadoop
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Research Questions

RQ1:How significant are the potential biases on the evaluation of DBRD
techniques?

RQ2: How do state-of-the-art DBRD research tools perform on recent 
data from diverse ITSs?

RQ3: How do the DBRD approaches proposed in research literature 
compare to those used in practice?
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RQ3 - VSCode dataset

Recall Rate@𝑘 comparing 

the tools in research and in 
practice on the VSCode data
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Our Recent Work

Can we do better?

Combining REP and ChatGPT for better DBRD
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ChatGPT is latest advanced generative AI technique

Motivation
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Process
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Methodology

▪ Selection Rules to select bug reports for ChatGPT to process:

▪ Length: long bug reports

▪ Content: complex structure

▪ Prompt template:
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Results

Dataset Total Bugs
Training 

Pairs

Validation 

Pairs

Testing

# of 

Duplicate 

Bugs

# Run By 

ChatGPT

Spark 9,579 626 26 81 59 (72%)

Hadoop 14,016 626 26 92 57 (62%)

Kibana 17,016 724 28 184 114 (62%)
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Results

Dataset RR@1 RR@3 RR@5 RR@10 Improv. 

Over 

SOTA

Spark 0.346 0.432 0.481 0.593 6.7%

Hadoop 0.391 0.565 0.609 0.652 7%

Kibana 0.408 0.571 0.62 0.674 8.7%
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ChatGPT keywords: Javadoc, HTML version, 
HTML4, HTML5, warning, comments, valid, 
GeneratedMessageV3, package, not found, error

Correct Master Bug Report

Retrieved Master 
Bug Report by REP
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Summary of Yellow Segment (Parts IV, V)

▪ Bug localization

▪ Leverage multiple notions of similarity

▪ Diverse artifacts in repos can be used

▪ Meaning of similarity can be learned from history

▪ Duplicate bug report detection

▪ Historical data can be used to tune detectors

▪ Biases can affect experiment results

▪ LLM can be helpful

Localization

Duplicate

IV

V
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Open Challenges I

Explainable Automated Bug 
Report Management
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Open Challenges II

Tight Integration with
Developer Workflow
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Open Challenges III

Holistic Analysis 
of Multiple Tasks

ID Category

T1 Bug localization

T2 Bug assignment

T3 Duplicate/similar bug detection

T4 Bug categorization

T5 Bug fixing time prediction

T6 Bug severity/priority prediction

T7 Bug report completion/refinement

T8 Bug-commit linking

T9 Bug report summarization/visualization

T10 Re-opened bug prediction
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Open Challenges III

WCRE 2012

Won Most Influential Paper Award @ SANER 2022

“Duplicate bug reports are utilized to determine what bug report features, 
be it textual, ordinal, or categorical, are important.”
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Handle Rich Media

CSI-SE 
2017

https://reqtest.com/

Open Challenges IV
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Industrial Collaborations

ICSE 2019 

Open Challenges V

MSR 2020

Won ACM SIGSOFT Distinguished Paper Award
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New Tasks

ASE 2019

Open Challenges VI
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ICSE TalkTrustedSEERs: Trusted SE Expert advisoRs

Building trusted bots towards Software 

Engineering 2.0

NRF Investigatorship project, 2023-2028 ($3.2M)

Individual research grant, similar to ERC Advanced
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Thank you!

Questions? Comments? Advice? 
davidlo@smu.edu.sg
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